It's not your normal, electronic silicon-based machine, but scientists have made a computer from a small, circular piece of DNA, then inserted it into a living bacterial cell and unleashed the microbe to solve a mathematical sorting problem.
"A computer is any system that can read some input and give some readable output," says Karmella Haynes, a biologist at Davidson College in North Carolina and co-author of a new study appearing in the Journal of Biological Engineering. Haynes and her team looked to harness the power of DNA recombination to solve the so-called "burnt pancake problem": a puzzle about how to stack different-size flapjacks that are burned on one side and perfectly cooked on the other using the fewest number of flips to arrange them so the largest are on the bottom and all are golden side up.
"A computer is any system that can read some input and give some readable output," says Karmella Haynes, a biologist at Davidson College in North Carolina and co-author of a new study appearing in the Journal of Biological Engineering. Haynes and her team looked to harness the power of DNA recombination to solve the so-called "burnt pancake problem": a puzzle about how to stack different-size flapjacks that are burned on one side and perfectly cooked on the other using the fewest number of flips to arrange them so the largest are on the bottom and all are golden side up.